The Borel conjecture (through controlled G-theory)

Boris Goldfarb University at Albany, SUNY

May 25, 2018 15th Annual Workshop on Topology and Dynamical Systems Nipissing University Joint project with Gunnar Carlsson

Topology is hard. A good idea is to geometrize your problem and exploit the geometry.

- Nikita Selinger

Topological rigidity

Poincare conjecture: if $M^n \simeq S^n$ then $M^n \approx S^n$.

Not true for arbitrary closed manifolds. Lens spaces $L(7,1) \simeq L(7,2)$ but not the same simple homotopy type.

Hurewicz '30: what if $\pi_1 M = 0$? Novikov '65: No — there is an S^4 -bundle over S^2 which is not a product.

Borel conjecture

Borel '52 in a letter to Serre: what if $\pi_1(M) \neq 0$ but \widetilde{M} is contractible?

Such manifolds are called *aspherical* indicating that all higher homotopy groups are trivial, very different from S^n .

But there are a lot of them in geometry (list coming soon). Also Gromov: pick randomly a closed manifold; it is aspherical with probability 1.

Evidence after '52

Mostow '54: solvmanifolds

Mostow Rigidity Theorem: hyperbolic manifolds, more generally locally symmetric spaces

Farrell and Jones '90s: non-positively curved manifolds

special — Waldhausen '79: M^3 with accessible $\pi_1(M)$

Recent results

Known cases of the Farrell-Jones conjecture imply the Borel conjecture when $\pi_1(M)$ is from a class that includes hyperbolic groups, CAT(0)-groups, virtually linear groups (Lück et al. '07-'13), virtually solvable groups (Wegner '15), mapping class groups (Bartels/Bestvina '17).

Theorem (Carlsson/G.) The Borel conjecture is true when $\pi_1(M)$ has finite decomposition complexity. In particular, it is true when $\pi_1(M)$ has finite asymptotic dimension.

This includes all known aspherical manifolds except for the family constructed by Mark Sapir. This family is not known to have FDC.

A reformulation

Given M^n , the structure set $\mathcal{S}(M)$ is the set of equivalence classes of homotopy equivalences $f_1: M_1 \to M$ such that $f_2 \circ h = f_1$ for some homeomorphism h.

Now Borel says: |S(M)| = 1 if M is aspherical.

Define $S^h(M)$ in the same way as S(M) but with a weaker relation, using h-cobordisms instead of homeomorphisms.

Long exact sequence in algebraic surgery Here $\Gamma = \pi_1(M)$.

$$\dots \longrightarrow H_{n+1}(M, L(\mathbb{Z})) \xrightarrow{A_{L,n+1}} L_{n+1}(\mathbb{Z}[\Gamma]) \longrightarrow S^{h}(M)$$
$$\longrightarrow H_{n}(M, L(\mathbb{Z})) \xrightarrow{A_{L,n}} L_{n}(\mathbb{Z}[\Gamma]) \longrightarrow \dots$$

Conjecture: all $A_{L,n}$ are isomorphisms, then $S^h(M) = 1$.

Now h-cobordisms over M are in bijective correspondence with the Whitehead group Wh(M).

So if Wh(M) = 1 then $S^h(M) = S(M)$.

Long exact sequence in algebraic K-theory Again $\Gamma = \pi_1(M)$.

$$\dots \longrightarrow H_1(M, K(\mathbb{Z})) \xrightarrow{A_{K,1}} K_1(\mathbb{Z}[\Gamma]) \longrightarrow Wh(M) \longrightarrow H_0(M, K(\mathbb{Z})) \xrightarrow{A_{K,0}} K_0(\mathbb{Z}[\Gamma]) \longrightarrow \dots$$

Conjecture: all $A_{K,n}$ are isomorphisms, then Wh(M) = 1.

The conjectures

The homomorphisms $A_{K,n}$ and $A_{L,n}$ are called *assembly maps*. We only want 4 of them to be isomorphisms: $A_{K,0}$, $A_{K,1}$, $A_{L,n+1}$, and $A_{L,n}$. But Hsiang (Warszawa ICM, '83) conjectured all of them are isomorphisms. Now this is known as the Isomorphism Conjecture.

Hsiang's *Isomorphism Conjecture*: if Γ is a group with a finite classifying space $K(\Gamma, 1)$ then all assembly maps are isomorphisms.

The injectivity portion is called the Novikov Conjecture.

What is K-theory?

Our results apply to L-theory and to K-theory, but I will only talk about K-theory.

I will treat K-theory as a black box. We only need to know that there is a machine that accepts an *additive category* A where \oplus is defined and spits out a space. The homotopy groups of the space are the K-theory of A.

Example: if A is the category of finitely generated free or projective modules over some ring R then the machine gives K(R).

When $R = \mathbb{Z}[\Gamma]$, K(R) contains very important information for homeomorphism classification of manifolds with $\pi_1 = \Gamma$ in general.

Ideas from equivariant topology

Z topological space, Γ group acting on Z

Notation: Z^{Γ} = fixed points, Z/Γ the orbit space

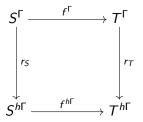
An issue: if $f: S \to T$ is an equivariant map and is a homotopy equivalence, the induced map on the fixed points $f^{\Gamma}: S^{\Gamma} \to T^{\Gamma}$ is NOT necessarily.

There is a repair.

Let's interpret Z^{Γ} as $Fun(point, Z)^{\Gamma}$. The homotopy fixed points $Z^{h\Gamma}$ is the space defined as $Fun(E\Gamma, Z)^{\Gamma}$. Here $E\Gamma$ is the universal free Γ space, the universal cover of a $K(\Gamma, 1)$.

Now for homotopy fixed points it is true that if $f: S \to T$ is an equivariant map and is a homotopy equivalence, the induced map on the homotopy fixed points $f^{h\Gamma}: S^{h\Gamma} \to T^{h\Gamma}$ is a homotopy equivalence.

The collapse $E\Gamma \rightarrow point$ induces $r: Z^{\Gamma} \rightarrow Z^{h\Gamma}$. And we have a commutative square



Now I will describe how to use this to model the assembly map as a fixed point map and used homotopy fixed points to prove the Novikov Conjecture.

The claim is that there are S and T with Γ -actions built out of the manifold M and a map f so that A_{\bullet} are induced from the space map $\alpha = f^{\Gamma} : S^{\Gamma} \to T^{\Gamma}$.

Let $X = \widetilde{M}$, so $M = X/\Gamma$. $S = h^{lf}(X, K(\mathbb{Z}))$, the locally finite homology. $T = K(X, \mathbb{Z})$, the bounded K-theory.

Facts:

- S^{Γ}_{-} is the homology of Γ , $H(B\Gamma, K(\mathbb{Z}))$.
- T^{Γ} is the K-theory of $\mathbb{Z}[\Gamma]$, $K(\mathbb{Z}[\Gamma])$.

- $\alpha = f^{\Gamma} \colon S^{\Gamma} \to T^{\Gamma}$ induces exactly the assembly maps $A_{K,n}$ on homotopy groups.

- $r_S \colon S^{\Gamma} \to S^{h\Gamma}$ is always an equivalence.

We just need to show there is an equivalence $f: h^{lf}(X, K(\mathbb{Z})) \to K(X, \mathbb{Z})$. This is enough to show that α is a split injection.

Ingredient #1. Locally finite homology

 $h^{lf}(X)$ for a metric space X

 C_k^{lf} = infinite formal linear combinations $\sum n_\sigma \sigma$ where $\sigma \colon \Delta^n \to X$ are the usual singular simplices satisfying the following conditions:

1) for any compact $K \subset X$ there are only finitely many σ with $im(\sigma) \cap K \neq \emptyset$ and $n_{\sigma} \neq 0$,

2) there is a uniform bound on diameters

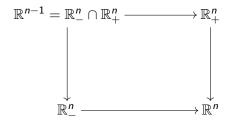
Then C_*^{lf} is a chain complex, H_*^{lf} its homology

Properties:

- Functorial with respect to proper maps (= pre-images of compact subsets are compact)

- Proper homotopy invariant
- $H_t^{lf}(\mathbb{R}^n) = 0$ for $t \neq n$ and \mathbb{Z} for t = n.
- $H_*^{lf}(K) = H_*(K)$ for K compact.

Mayer-Vietoris



induces a homotopy pushout on H_*^{lf} . This suggests $H_*^{lf}(\mathbb{R}^n_+) = H_*^{lf}(\mathbb{R}^n_-) = 0$

Picture.

Ingredient #2. Bounded K-theory K(X, R)

After Pedersen/Weibel.

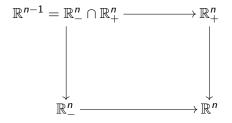
Objects = collections of choices F_x which are free finitely generated R-modules associated to each point x in X, with the requirement that only finitely many F_x are non-0 for x from a bounded subset S.

The module $F(X) = \bigoplus F_x$ can be given a filtration by $F(S) = \bigoplus_{x \in S} F_x$.

A homomorphism $f: F \to G$ is *bounded* if there is a number b so that for all subsets S we have $f(F(S)) \subset G(S[b])$, using the notation S[b] for the *b*-enlargement of S.

This is an additive category $\rightsquigarrow K(X, R)$

Again Mayer-Vietoris

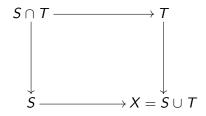


induces a homotopy pushout on K.

In fact can replace half-spaces by any pair of *antithetic* subsets U and V in any metric space X. This means for each number K > 0 there is a number K' > 0 so that

```
S[K] \cap T[K] \subset (S \cap T)[K'].
```

Then still true that



induces a homotopy pushout on K. And on h^{lf} .

We have just proven the Novikov conjecture for tori T^n because their universal covers are \mathbb{R}^n .

Promote: excision on trees

Promote: excision on products ~> products of trees

Promote: any subspace of products of trees

Promote: (Carlsson/G. '04) any metric space embedded in a finite product of trees via a uniformly expansive map \equiv any metric space with finite asymptotic dimension (Dranishnikov)

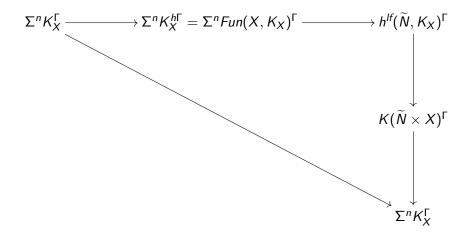
Generalization: (Ramras/Tessera/Yu '16) any metric space with finite decomposition complexity

Surjectivity of the assembly

We specialize to M closed aspherical manifold, $\pi_1(M) = \Gamma$. We will denote $K_X = K(X, \mathbb{Z}) = K(\widetilde{M}, \mathbb{Z})$. Recall that we want to show that $r: K_X^{\Gamma} \to K_X^{h\Gamma}$ is a split injection. We will reuse the strategy for Novikov.

Embed *M* in \mathbb{R}^n for large enough *n*, let *N* be the normal bundle.

We start with a suspension of the map we are interested in.



Reality check

We can only prove this diagram is commutative when "K" is replaced by "G", the controlled G-theory in the title. But there is also a comparison theorem.

Theorem (Carlsson/G.) $K_X^{\Gamma} \cong G_X^{\Gamma}$ if Γ has straight FDC, property due to Dranishnikov/Zarichnyi which is weaker than FDC itself. This theorem also has an essentially coarse geometric proof. This property is called *coarse coherence*.

So Corollary The Borel conjecture is true for M with $\pi_1(M)$ that has FDC.

Slogan

"Borel = Novikov + coarse coherence"

It seems that now the generally believed "Novikov" is the bottleneck.

The honest statement

Theorem (Carlsson/G. '16)

Suppose *R* is a regular Noetherian ring of finite global dimension. (For example \mathbb{Z} .) Suppose Γ is a group with finite BG = K(G, 1) and has FDC.

Then the K-theoretic assembly α is an equivalence.

Remark: the geometric condition FDC or straight FDC contributes to both "Novikov" and "coherence" items.

With the same assumptions one has the same conclusions in quadratic *L*-theory (Carlsson/G./Varisco, in progress).